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Abstract
The axis deer (Axis axis) is a species of ungulate native to the Indian subcontinent. In the nineteenth and twentieth centuries, 
the axis deer was introduced to many regions of the world, where it established non-native free-ranging populations. The 
introduction of the axis deer to Croatia resulted in three populations that still live on the Adriatic islands.
In this study, two new mitochondrial DNA control region (D-loop) haplotypes were identified in 39 axis deer samples from 
two Adriatic islands Rab and Dugi Otok in Croatia. Two distinct D-loop haplotypes found in Croatian axis deer popula-
tions indicate that axis deer in Croatia were introduced from at least two maternal lineages. Genetic differentiation between 
populations was quite low and not significant. Haplotype (0.497) and nucleotide (0.006) diversity of Croatian axis deer was 
similar to that of axis deer from Queensland, Australia (0.461 and 0.002, respectively). For a better understanding of the 
origin and genetic diversity of the introduced axis deer from Croatia, analysis of native populations and the addition of highly 
variable nuclear markers is required.
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The Cervidae is a group of antler-bearing ungulates of vary-
ing size with a complex taxonomy of about 53 species and 
169 extant taxa with a worldwide distribution (Mattioli 
2011). Ungulates are the most widespread and numerous 
large terrestrial mammals in Europe with about 20 species. 
These species play an important role in the ecosystem, which 
is even more pronounced in the case of non-native species 
that pose a threat to native species and/or habitats. Among 
all the introduced non-native groups of mammal species in 
Europe, the ungulates stand out as one of the most important 
game groups in all European countries (Carpio et al. 2017). 
The most common ungulate species in Europe such as red 

deer (Cervus elaphus), roe deer (Capreolus capreolus) and 
wild boar (Sus scrofa) have been the subject to numerous 
scientific studies (Linnell and Zachos 2011). On the other 
hand, some non-native species are already the subject of 
scientific studies (e.g., sika deer—Cervus nippon, Linnell 
and Zachos 2011), while others are poorly studied (e.g., axis 
deer—Axis axis, Šprem and Zachos 2020).

Axis deer or chital originate from the Indian subcon-
tinent, where population size has declined rapidly due to 
recent human activities such as uncontrolled hunting or 
habitat fragmentation due to urbanisation, and agricultural 
practise (Abbas et al. 2016), but the species is still classi-
fied as ‘Least Concern’ by the IUCN (International Union 
for Conservation of Nature) (Duckworth et al. 2015). In the 
nineteenth and twentieth centuries, axis deer were intro-
duced to many regions of the world, where they established 
non-native free-ranging populations (Šprem and Zachos 
2020). There have been several attempts at the introduction 
of axis deer individuals by various European countries, but 
it has been successful only in Croatia, where three popula-
tions still live on the Adriatic islands. The genetic origin of 
the introduced individuals is not known, but it is suspected 
that they were imported by the German wildlife trader Carl 
Hagenbeck (Šprem et al. 2008; Kusak and Krapinec 2010). 
The first introduction occurred in 1911 at Brijuni Islands, as 

Handling editor: Frank E. Zachos.

 *	 Elena Buzan 
	 elena.buzan@upr.si

1	 Faculty of Agriculture, Department of Fisheries, Apiculture, 
Wildlife Management and Special Zoology, University 
of Zagreb, Zagreb, Croatia

2	 Faculty of Forestry and Wood Technology, Department 
of Forest Ecology and Silviculture, University of Zagreb, 
Zagreb, Croatia

3	 Faculty of Mathematics, Natural Sciences and Information 
Technologies, University of Primorska, Koper, Slovenia

4	 Environmental Protection College, Velenje, Slovenia

http://orcid.org/0000-0002-3475-6653
http://orcid.org/0000-0002-5192-9974
http://orcid.org/0000-0003-0714-5301
http://crossmark.crossref.org/dialog/?doi=10.1007/s42991-021-00164-9&domain=pdf


	 N. Šprem et al.

1 3

it was an acclimatisation station for wild animals from the 
tropical belt that were on their way to European zoos (Šprem 
et al. 2008; Kusak and Krapinec 2010). In 1974, eight indi-
viduals (two males and six females) were translocated from 
Brijuni Islands to the Kalifront Peninsula part of the island 
of Rab and have since been kept for hunting purposes (Cen-
tore et al. 2018). Another population established on the 
island of Dugi Otok dates back to 2012, when 13 individu-
als originating from Brijuni Islands escaped from a fenced 
area. There were also several other attempts to translocate 
axis deer in different parts of Croatia, but they all failed 
due to the poor adaptation of this species to the continental 
climate (Krapinec 2001). Therefore, the axis deer from the 
Adriatic Islands in Croatia are the only free-living European 
populations (for more details see Šprem and Zachos 2020).

Axis deer have rarely been the subject of genetic stud-
ies worldwide, and there is still a lack of genetic data for 
European (Croatian) axis deer. In a recent methodological 
paper, Paul et al. (2019) describe a set of molecular markers 
to identify species and sex of five cervids (including axis 
deer) in northern India. A few studies confirmed hybridiza-
tion between axis deer and some other cervid species, and 
hybridization with sika deer was detected in a deer farm in 
the USA (Asher et al. 1999). Hybridization between axis 
deer and hog deer (Hyelaphus porcinus) has been reported 
twice, the first in a check-list of mammalian hybrids by 
Gray (1954) and the second, more recent in Australia by 
Hill et al. (2019). In addition, Gray (1954) reported also 
axis deer hybridization with red deer and white-tailed deer 
(Odocoileus virginianus). According to Iacolina et al. (2019) 
no hybridization with axis deer has been reported in Europe. 
The mitochondrial DNA (mtDNA) variation of Pakistani 
axis deer populations was investigated in the study by Abbas 
et al. (2016), where they found low mitochondrial genetic 
differentiation between the studied populations.

In this study, we present a first assessment of the maternal 
genetic variability of the axis deer populations in Croatia. 
Since mtDNA sequences represent a useful tool for assessing 
genetic diversity and variability between populations (Tešija 
and Safner 2021), the aims of this study were the follow-
ing: (i) to determine the genetic diversity of the mtDNA 
control region in axis deer populations from the Adriatic 
islands of Rab and Dugi Otok in Croatia; (ii) to combine 
the haplotypes found in the studied populations with those 
previously identified and available in GenBank, to improve 
our understanding of the geographic variation of axis deer.

The study was conducted on the islands of Rab and Dugi 
Otok in Croatia. Rab Island is located in the northeastern 
Adriatic Sea (44°47′24′′N, 14°40′10′′E). The area is a forest 
ecosystem consisting of carbonate rocks and predominantly 
holm oak (Quercus ilex) and manna ash (Fraxinus ornus) 
(Ugarković and Ugarković 2013; Kavčić et al. 2019), at 
altitudes between sea level and 94 m. Dugi Otok Island at 

altitudes up to 338 m a.s.l. is located in the central Adriatic 
Sea (43°57′56′′N, 15°06′24′′E). In the northern part scrub 
and the degradation stage of holm oak forest (Quercus ilex) 
with myrtle (Myrtus communis) predominate, while in 
the southern part of the island Aleppo pine forests (Pinus 
halepensis) and holm oaks occur (Vukelić 2012). According 
to the Köppen climate classification, Rab Island belongs to 
the moderately humid climate with hot summers, climate 
type Cfa, while Dugi Otok Island belongs to the Mediter-
ranean climate with hot summers, climate type Csa (Šegota 
and Filipčić 2003). Population size is estimated by visual 
counts conducted by gamekeepers during field observations 
twice a year (in spring and autumn); on the island of Rab 
there are 78 individuals (Centore et al. 2018) and on Dugi 
Otok 46 individuals (Šprem N 2020, pers. obs.).

Tissue samples were collected from 42 axis deer (Rab 
Island, n = 35; Dugi Otok Island, n = 7) during regular culls 
between 2017 and 2021 in accordance with wildlife manage-
ment plans.

DNA was extracted from tissue samples, using the Tissue 
DNA Mini Kit – S line (VWR International, Leuven, Bel-
gium; thereafter: PeqLab), according to the manufacturer’s 
instructions. DNA fragments of the mitochondrial control 
region (D-loop) were amplified according to the protocol 
and using the primers described in Hill et al. (2019) by ready 
to use Kapa2G Fast multiplex mix (Kapa Biosystems) in a 
20-μL reaction containing 3.0 mM MgCl2 and 0.5 mM of 
forward and reverse primer. Cycling conditions consisted 
of an initial stage of 95 °C for 3 min followed by 35 cycles 
of denaturation (30 s at 95 °C), primer annealing (30 s at 
58 °C), extension (40 s at 72 °C) and 10 min of final exten-
sion at 72 °C.

Sequencing reactions were carried out on both DNA 
strands. Ambiguous results were checked by multi-
ple sequencing of a new DNA extraction from the same 
individual.

Sequencing was performed on SeqStudio sequencer 
(Thermofischer Scientific) using BigDye Terminator chem-
istry (Applied Biosystems, Foster City, CA, USA).

The Codoncode Aligner program v 3. 7. 1 (CodonCodes 
Inc., Ewing et  al. 1998) was used to align forward and 
reverse sequences. The resulting 576 bp consensus sequence 
was aligned using CLUSTALW (version 4.0, Thompson 
et al. 1997) implemented in the MEGA package (version 
X, Kumar et al. 2018). As pseudogenes are known to repre-
sent a serious source of error for mitochondrial phylogenies 
(Triant and DeWoody 2009), control region sequences were 
checked for the absence of stop codons and indels.

Genetic diversity indices (number of haplotypes, poly-
morphic sites, haplotype and nucleotide diversities, mean 
number of pairwise differences) were calculated using Arle-
quin 3.5 (Excoffier and Lischer 2010) for the whole dataset 
and individual populations. The Tamura 3-parameter model 
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was used to correct for the number of nucleotide substitutons 
per site, since it was the best nucleotide model proposed 
by MEGA. Differentiation between the two populations 
was estimated with pairwise FST using Arlequin with 1000 
permutations.

To evaluate the phylogenetic position of Croatian axis 
deer, additional mtDNA control region (D-loop) haplotypes 
of axis deer were downloaded from GenBank and included 
in our dataset (JN632599: Hassanin et al. 2012; MN226865-
MN226866: Hill et  al. 2019; JN596132-JN596143, 
JN596145-JN596148, JN596150-JN596151, JN596153-
JN596156: Kumar et al. unpublished, direct submission to 
GenBank). The geographic origin of these sequences were 
India and northern Queensland in Australia. The GenBank 
sequences were shorter but there was an overlap with ours in 
320 bp, and the final alignment comprised 25 sequences and 
16 haplotypes. To visualize the phylogenetic relationships 
among haplotypes, a median-joining haplotype network 
was created using the program PopART (Leigh and Bryant 
2015). Network analyses are well suited to assess relation-
ships among haplotypes in intraspecific studies because in 
contrast to phylogenetic trees, they take into account the 
presence of ancestral haplotypes and likely evolutionary 
pathways (Zachos 2009).

Three samples out of 42 were not successfully amplified 
due to highly degraded DNA. Therefore, the following anal-
yses were conducted on 39 mtDNA control region (D-loop) 
sequences from the two Croatian axis deer populations. A 
576-bp D-loop fragment amplified in this study corresponds 
to positions 15,460–16,035 of the complete axis deer mito-
chondrial genome (NC_020680: Hassanin et al. 2012). A 
total of seven polymorphic sites were identified (7 transi-
tions), resulting in two (and previously unknown) haplotypes 
with a sequence divergence of 1.22% (GenBank Accession 
numbers MZ421332 and MZ421333). The presence of two 
maternal lineages indicates that axis deer in Croatia were 
established by females going back to at least two different 
maternal lineages.

The total haplotype (Hd) and nucleotide diversities (π) 
were 0.497 and 0.006, respectively, and the average number 
of nucleotide differences (k) was 3.522 (Table 1). Haplotype 
diversity within the population of Dugi Otok was 0.286 and 
for Rab 0.514, while nucleotide diversity was 0.004 for Dugi 
Otok and 0.006 for Rab. In the population of Dugi Otok, all 
but one of the seven analysed individuals carried the same 
haplotype.

Genetic differentiation was quite low and not significant 
between sampled populations (FST = 0.119, P > 0.204). The 
FST value means 88.1% variance at the intrapopulation level.

The structure of the median‐joining haplotype network 
created by combining our data and GenBank sequences from 
India and Australia showed the low number of mutations 
between haplotypes (mean 5.5), indicating either that they 

originated from the same evolutionary unit or that mitochon-
drial divergence in the species is overall low (Fig. 1). Two 
different haplotypes are present in both populations stud-
ied and could also reflect the two past introduction events 
of axis deer in Croatia. From the literature review the first 
introduction to Brijuni Island occurred in 1911 while the 
second event occurred in the 1960s to 1970s, but with ani-
mals of unknown origin (Bojović 1987; Šprem et al. 2008). 
The haplotypes detected in the Croatian samples were not 
observed in the native axis deer population from India or in 
the introduced Australian one (Hill et al. 2019). The Austral-
ian population was established by imported individuals from 
India (Jesser 2005). It should be emphasized that the study 
by Hill et al. (2019) was primarily on hog deer and the num-
ber of axis deer samples analyzed (35) could at best provide 
preliminary results, considering that the population size of 
axis deer in Australia has been estimated at 44,000 individu-
als (Kelly et al. 2021). However, both Croatian haplotypes 
were separated from their nearest neighbor by a maximum 
of three mutational steps (Fig. 1).

The present study showed a low level of haplotype diver-
sity in axis deer from the Adriatic islands of Rab and Dugi 
Otok in Croatia, in line with a founder effect when they 
were introduced. This is comparable to two D-loop haplo-
types found in 35 individuals of axis deer from northern 
Queensland, Australia (Hill et al. 2019). Similarly, haplotype 
(0.497) and nucleotide (0.006) diversity of the Croatian axis 
deer match the values found in the Australian axis deer sam-
ple (0.461 and 0.002, respectively). In contrast, 25 D-loop 
haplotypes are reported in GenBank for axis deer from their 
natural range in India.

A similarly low number of haplotypes has been reported 
for other ungulate species recently introduced to Europe. 
D-loop analysis of 26 individuals of sika deer (Cervus nip-
pon) from two regions in continental Europe, Kadyny Forest 
(Poland) and Kaliningrad District (Russia), revealed only 
two haplotypes, with each population monomorphic for one 
of them (Biedrzycka et al. 2012). A slightly higher number 
of mtDNA control region haplotypes (in total four) were 
found in European populations of Barbary sheep, or aoudad 

Table 1   Genetic diversity indices based on a 576-bp fragment of 
D-loop for axis deer (Axis axis) in Croatia

Island/population Rab Dugi Otok All samples

No. samples 32 7 39
No. haplotypes 2 2 2
No. polymorphic sites (S) 7 7 7
Haplotype diversity (Hd) 0.514 0.286 0.497
Nucleotide diversity (π) 0.006 0.004 0.006
Mean no. of pairwise differences 

(k)
3.646 2.026 3.522
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(Ammotragus lervia). Sierra Espuña in Spain was the only 
population where more than one haplotype was detected for 
this species (Stipoljev el al. 2021).

Previous studies on mtDNA diversity in European fallow 
deer (Dama dama dama) have generally shown low haplo-
type diversity in most populations (Baker et al. 2017; Kusza 
et al. 2018). The haplotype diversity found in our study is 
lower than the Hd values reported for the majority of Euro-
pean fallow deer populations, ranging from 0 to 0.962 (mean 
0.664), while the low nucleotide diversity value is similar to 
the reported π values, ranging from 0 to 0.0134 (mean 0.006) 
(Kusza et al. 2018).

On the other hand, the native red deer (Cervus elaphus), 
which is one of the most widespread European ungulate spe-
cies, has generally high D-loop haplotype diversity across 
Europe, with an overall Hd value of 0.96 (Skog et al. 2009).

Our study showed that Croatian axis deer have similar 
mitochondrial genetic diversity indices as found in other 
recently introduced populations. Genetic analysis of the 
native population and the addition of highly variable nuclear 
markers (e.g., microsatellites or genome-wide SNPs) are 
necessary for a better understanding of the origin and genetic 
diversity of axis deer populations in Croatia.
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